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Abstract

We develop a new method for simulating the joint law of the position and running
maximum at a fixed time of a general Lévy process with a view to application in
insurance and financial mathematics. Although different, our method takes lessons
from Carr’s so-called ‘Canadization’ technique as well as Doney’s method of stochas-
tic bounds for Lévy processes; see Carr [6] and Doney [8]. We rely fundamentally
on the Wiener-Hopf decomposition for Lévy processes as well as taking advantage
of recent developments in factorisation techniques of the latter theory due to Vigon
[20] and Kuznetsov [11]. We illustrate our Wiener-Hopf Monte Carlo method on
a number of different processes, including a new family of Lévy processes called
hypergeometric Lévy processes.
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 1 Introduction

Let us suppose that X = {Xt : t ≥ 0} is a general Lévy process with law P and Lévy

measure Π. That is to say, X is a Markov process with paths that are right continu-

ous with left limits such that the increments are stationary and independent and whose

characteristic function at each time t is given by the Lévy-Khinchine representation

E(eiθXt) = e−tΨ(θ) , θ ∈ R ,

where

Ψ(θ) = iθa+
1

2
σ2θ2 +

∫
(−∞,+∞)

(1− eiθx + iθx1{|x|<1})Π(dx) . (1.1)

We have a ∈ R, σ2 ≥ 0 and Π is a measure supported on R with Π({0}) = 0 and∫
R(x2 ∧ 1)Π(dx) < ∞. Starting with the early work of Madan and Seneta [16], Lévy

processes have played a central role in the theory of financial mathematics and statistics

(see for example the books [4, 7, 17, 18]). More recently they have been extensively used in

modern insurance risk theory (see for example Klüppelberg et al. [10], Song and Vondraček

[19]). The basic idea in financial mathematics and statistics is that the log of a stock price

or risky asset follows the dynamics of a Lévy process whilst in insurance mathematics, it

is the Lévy process itself which models the surplus wealth of an insurance company until

ruin. There are also extensive applications of Lévy processes in queuing theory, genetics

and mathematical biology as well as through their appearance in the theory of stochastic

differential equations.

In both financial and insurance settings, a key quantity of generic interest is the joint

law of the current position and the running maximum of a Lévy process at a fixed time

if not the individual marginals associated with the latter bivarite law. For example, if

we define X t = sups≤tXs then the pricing of barrier options boil down to evaluating

expectations of the form E(f(x +Xt)1{x+Xt>b}) for some appropriate function f(x) and

threshold b > 0. Indeed if f(x) = (K − ex)+ then the latter expectation is related to the

value of an ‘up-and-in’ put. In credit risk one is predominantly interested in the quantity

P̂(X t < x) as a function in x and t, where P̂ is the law of the dual process −X. Indeed

it is as a functional of the latter probabilities that the price of a credit default swap

is computed; see for example the recent book of Schoutens and Cariboni [18]. One is

similarly interested in P̂(X t ≥ x) in ruin theory as these probabilities are also equivalent

to the finite-time ruin probabilities.

One obvious way to do Monte Carlo simulation of expectations involving the joint law

of (Xt, X t) that takes advantage of the stationary and independent increments of Lévy

processes is to take a random walk approximation to the Lévy process, simulate multiple

paths, taking care to record the maximum for each run. Whilst one is able to set things

up in this way so that one samples exactly from the distribution of Xt, the law of the

maximum of the underlying random walk will not agree with the law of X t.

Taking account of the fact that all Lévy processes respect a fundamental path de-

composition known as the Wiener-Hopf factorisation, it turns out there is another very
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 straightforward way to perform Monte Carlo simulations for expectations involving the

joint law of (Xt, X t) which we introduce in this paper. Our method allows for exact

sampling from the law of (Xg, Xg) where g is a random time whose distribution can be

concentrated arbitrarily close around t.

There are several advantages of the technique we use which are discussed in detail in

the subsequent sections of this paper. Firstly, when it is taken in context with very recent

developments in Wiener-Hopf theory for Lévy processes, for example recent advances

in the theory of scale functions for spectrally negative processes (see Kyprianou et al.

[14]), new complex analytical techniques due to Kuznetsov [11] and Vigon’s theory of

philanthropy (see [20]), one may quickly progress the algorithm to quite straightforward

numerical work. Secondly, our Wiener-Hopf method takes advantage of a similar feature

found in the, now classical, ‘Canadization’ method of Carr [6] for numerical evaluation of

optimal stopping problems. The latter is generally acknowledged as being more efficient

than appealing to classical random walk approximation Monte Carlo methods. Indeed,

later in this paper, we present our numerical findings with some indication of performance

against the method of random walk approximation for the case of Brownian motion, one

of the very few examples for which the joint law of (Xt, X t) is known analytically. In this

case, our Wiener-Hopf method appears to be extremely effective. Thirdly, in principle, our

method handles better the phenomena of discontinuities which can occur with functionals

of the form E(f(x+Xt)1{x+Xt>b}) at the boundary point x = b. It is now well understood

that the issue of regularity of the upper and lower half line for the underlying Lévy process

(see Chapter 6 of [12] for a definition) is responsible the appearance of a discontinuity at

x = b in such functions (cf. [1]). The nature of our Wiener-Hopf method naturally builds

the distributional atom which is responsible for this discontinuity into the simulations.

2 Wiener-Hopf Monte Carlo simulation technique

The basis of the algorithm is the following simple observation which was pioneered by Carr

[6] and subsequently used in several contexts within mathematical finance for producing

approximate solutions to free boundary value problems that appear as a result of optimal

stopping problems that characterise the value of an American-type option.

Suppose that e1, e2, · · · are a sequence of i.i.d. exponentially distributed random vari-

ables with unit mean. Suppose they are all defined on a common product space with

product law P which is orthogonal to the probability space on which the Lévy process X

is defined. For all t > 0, we know from the Strong Law of Large Numbers that

n∑
i=1

t

n
ei → t as n ↑ ∞ (2.2)

P-almost surely. The random variable on the left hand side above is equal in law to a

Gamma random variable with parameters n and n/t. Henceforth we write it g(n, n/t). Re-

call that (X,P) is our notation for a general Lévy process. Then writingX t = sups≤tXs we

3



 
 argue the case that, for sufficiently large n, a suitable approximation to P(Xt ∈ dx, X t ∈

dy) is P× P(Xg(n,n/t) ∈ dx, Xg(n,n/t) ∈ dy).

This approximation gains practical value in the context of Monte Carlo simulation

when we take advantage of the fundamental path decomposition that applies to all Lévy

processes over exponential time periods known as the Wiener-Hopf factorisation.

Theorem 1. For all n ∈ {1, 2, · · · } and λ > 0 define g(n, λ) :=
∑n

i=1 ei/λ. Then

(Xg(n,λ), Xg(n,λ))
d
= (V (n, λ), J(n, λ))

where

V (n, λ) =
n∑

j=1

{S(j)
λ + I

(j)
λ } and J(n, λ) :=

n−1∨
i=0

(
i∑

j=1

{S(j)
λ + I

(j)
λ }+ S

(i+1)
λ

)
.

Here, S
(0)
λ = I

(0)
λ = 0, {S(j)

λ : j ≥ 1} are an i.i.d. sequence of random variables with

common distribution equal to that of Xe1/λ and {I(j)
λ : j ≥ 1} are another i.i.d. sequence

of random variable with common distribution equal to that of Xe1/λ.

Proof. Suppose we define Xs,t = sups≤u≤tXu. Then it is trivial to note that

Xg(n,λ) =
n∨

i=1

Xg(i−1,λ),g(i,λ) (2.3)

where g(0, λ) := 0.

Next we prove by induction that for each k = 0, 1, · · ·

(Xg(n,λ) : n ≤ k)
d
=

(
n∑

j=1

{S(j)
λ + I

(j)
λ } : n ≤ k

)
. (2.4)

Note first that the above equality is trivially true when k = 1 on account of the Wiener-

Hopf factorisation. Indeed the latter tells us that Xe1/λ and Xe1/λ−Xe1/λ are independent

and the second of the pair is equal in distribution to Xe1/λ. Now suppose that (2.4) is

true for k ≥ 1. Then stationary and independent increments of X together with the

Wiener-Hopf factorisation imply that

Xg(k+1,λ)
d
= Xg(k,λ) +X

(k+1)
ek+1/λ = Xg(k,λ) + S

(k+1)
λ + I

(k+1)
λ .

where X(k+1) is an independent copy of X, S
(k+1)
λ := sups≤ek+1/λX

(k+1)
s and I

(k+1)
λ :=

infs≤ek+1/λX
k+1
s . The induction hypothesis thus holds for k + 1.

For n = 0, 1, · · · , stationary and independent increments of X allows us to write

Xg(n,λ),g(n+1,λ)
d
= Xg(n,λ) + sup

s≤en+1/λ

X(n+1)
s = Xg(n,λ) + S

(n+1)
λ .
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 Hence for k = 0, 1, · · ·

(Xg(n,λ),g(n+1,λ) : n ≤ k)
d
=

(
n∑

j=1

{S(j)
λ + I

(j)
λ }+ S

(n+1)
λ : n ≤ k

)
.

From (2.3) and (2.4) the result now follows.

Note that the idea of embedding a random walk into the path of a Lévy process with

two types of step distribution determined by the Wiener-Hopf factorisation has been used

in a different, and more theoretical context, by Doney [8].

The previous theorem combined with the strong law of large numbers in (2.2), which

occurs on a probability space orthogonal to that of the Lévy process X, gives us the

following important corollary.

Corollary 1. We have as n ↑ ∞

(V (n, n/t), J(n, n/t)) → (Xt, X t)

where the convergence is understood in the distributional sense.

The above corollary now suggests that we need only to be able to simulate i.i.d. copies

of the distributions of Sn/t := S
(1)
n/t and In/t := I

(1)
n/t and then by a simple functional

transformation we may produce a realisation of the random variable Xg(n,n/t). Given a

suitably nice function F , using standard Monte-Carlo methods one estimates for large k

E(F (Xt, X t)) '
1

k

k∑
m=1

F (V (m)(n, n/t), J (m)(n, n/t))

where (V (m)(n, n/t), J (m)(n, n/t)) are i.i.d. copies of (V (n, n/t), J(n, n/t)). Indeed the

strong law of large numbers and Corollary 1 imply that the right hand side above converges

almost surely as k ↑ ∞ to E×E(F (Xg(n,n/t), Xg(n,n/t))) which in turn converges as n ↑ ∞
to E(F (Xt, X t)).

3 Implementation

The algorithm described in the previous section only has practical value if one is able to

sample from the distributions of Xe1/λ and −Xe1/λ. It would seem that this, in itself, is

not that much different from the problem that it purports to solve. However, it turns out

that there are many tractable examples and in all cases this is due to the part tractability

of their Wiener-Hopf factorisations.

Whilst several concrete cases can be handled from the class of spectrally one-sided

Lévy processes thanks to recent development in the theory of scale functions which can

be used to described the laws of Xe1/λ and −Xe1/λ (cf. [9, 15]), we give here two large

families of two sided jumping Lévy processes that have pertinence to mathematical finance

to show how the algorithm may be implemented.
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 3.1 Kuznetsov’s β-class of Lévy processes

The β-class of Lévy processes, introduced by Kuznetsov [11], is a 10-parameter Lévy

process which has characteristic exponent

Ψ(θ) = iaθ +
1

2
σ2θ2 +

c1
β1

{
B(α1, 1− λ1)−B(α1 −

iθ

β1

, 1− λ1)

}
+
c2
β2

{
B(α2, 1− λ2)−B(α2 −

iθ

β2

, 1− λ2)

}
with parameter range a, σ ∈ R, c1, c2, α1, α2, β1, β2 > 0 and λ1, λ2 ∈ (0, 3) which is the

result of an underlying Lévy measure Π with density π given by

π(x) = c1
e−α1β1x

(1− e−β1x)λ1
1{x>0} + c2

eα2β2x

(1− eβ2x)λ2
1{x<0}.

Although Ψ takes a seemingly complicated form, this particular family of Lévy processes

has a number of very beneficial virtues from the point of view of mathematical finance

which are discussed in [11]. Moreover, the large number of parameters also allows one

to choose Lévy processes within the β-class that have paths that are both of unbounded

variation (when at least one of the conditions σ 6= 0, λ1 ∈ (2, 3) or λ2 ∈ (2, 3) holds) and

bounded variation (when all of the conditions σ = 0, λ1 ∈ (0, 2) and λ2 ∈ (0, 2) hold) as

well as having infinite and finite activity in the jumps component (accordingly as both

λ1, λ2 ∈ (1, 3) or not).

What is special about the β-class is that all the roots of the equation λ + Ψ(θ) = 0

are completly identifiable which leads to semi-explicit identities for the laws of Xe1/λ and

−Xe1/λ as the following result lifted from Kuznetsov [11] shows.

Theorem 2. For λ > 0, all the roots of the equation

λ+ Ψ(θ) = 0

are simple and occur on the imaginary axis. They can be enumerated by {iζ+
n : n ≥ 0} on

the positive imaginary axis and {iζ−n : n ≥ 0} on the negative imaginary axis in order of

increasing absolute magnitude where

ζ+
0 ∈ (0, β2α2), ζ

−
0 ∈ (−β1α1, 0),

ζ+
n ∈ (β2(α2 + n− 1), β2(α2 + n)) for n ≥ 1

ζ−n ∈ (β1(−α1 − n), β1(−α1 − n+ 1)) for n ≥ 1.

Moreover, for x > 0,

P(Xe1/λ ∈ dx) = −

(∑
k≥0

c−k ζ
−
k e

ζ−k x

)
dx (3.5)
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 where

c−0 =
∏
n≥1

1 +
ζ−0

β1(n−1+α1)

1− ζ−0
ζ−n

and c−k =
1 +

ζ−k
β1(k−1+α1)

1− ζ−k
ζ−0

∏
n≥1,n6=k

1 +
ζ−k

β1(n−1+α1)

1− ζ−k
ζ−n

.

A similar expression holds for P(−Xe1/λ ∈ dx) with the role of {ζ−n : n ≥ 0} being played

by {−ζ+
n : n ≥ 0} and α1, β1 replaced by α2, β2.

Note that when 0 is irregular for (0,∞) the distribution of Xe1/λ will have an atom

at 0 which can be computed from (3.5) and is equal to 1−
∑

k≥0 c
−
k . Alternatively, from

Remark 6 in [11] this can equivalently be written as
∏

n≥0(−1)nζ−n /β1(n+ α1). A similar

statement can be made concerning an atom at 0 for the distribution of −Xe1/λ when 0 is

irregular for (−∞, 0). Conditions for irregularity are easy to check thanks to Bertoin [3];

see also the summary in Kyprianou and Loeffen [13].

By making a suitable truncation of the series (3.5) one may easily perform independent

sampling from the distributionsXe1/λ andXe1/λ as required for our Monte Carlo methods.

3.2 Philanthropy and General Hypergeometric Lévy processes.

The forthcoming discussion will assume familiarity with classical excursion theory of Lévy

processes for which the reader is referred to Chapter VI of [2] or Chapter 6 of [12].

According to Vigon’s theory of philanthropy, a (killed) subordinator is called a phi-

lanthropist if its Lévy measure has a decreasing density on R+. Moreover, given any two

subordinators H1 and H2 which are philanthropists, providing that at least one of them

is not killed, there exist a Lévy process X such that H1 and H2 have the same law as

the ascending and descending ladder height processes of X, respectively. Suppose we de-

note the killing rate, drift coefficient and Lévy measures of H1 and H2 by the respective

triples (k, δ,ΠH1) and (k̂, δ̂,ΠH2). Then [20] shows that the Lévy measure of X satisfies

the following identity

Π
+

X(x) =

∫ ∞

0

ΠH1(x+ du)ΠH2(u) + δ̂ πH1(x) + k̂ΠH1(x), x > 0, (3.6)

where πH1 is the density of ΠH1 . By symmetry, an obvious analogue of (3.6) holds for the

negative tail Π
−
X(x) := ΠX(−∞, x), x < 0.

A particular family of subordinators which will be of interest to us is the class subordi-

nators which is found within the definition of Kuznetsov’s β-class of Lévy processes. These

processes have characteristics (c, α, β, γ) where γ ∈ (0, 1), β, c > 0 and α ∈ (−∞, 1]. The

Lévy measure of such subordinators is of the type

c
eαβx

(eβx − 1)1+γ
1{x>0} dx. (3.7)
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 From Proposition 9 in [11], the Laplace exponent of a β-class subordinator satisfies

Φ(θ) = k + δθ + c
Γ(1− γ)

βγ

(
Γ(θ/β + 1− α+ γ)

Γ(θ/β + 1− α)
− Γ(1− α+ γ)

Γ(1− α)

)
(3.8)

for θ ≥ 0 where δ is the drift coefficient and k is the killing rate.

Let H1 and H2 be two independent subordinators from the β-class where for i = 1, 2,

with respective drift coefficients δi ≥ 0, killing rates ki ≥ 0 and Lévy measure parameters

(ci, αi, βi, γi). Their respective Laplace exponents are denoted by Φi, i = 1, 2. In Vigon’s

theory of philanthropy it is required that k1k2 = 0. Under this assumption, let us denote

by X the Lévy process whose ascending and descending ladder height processes have the

same law asH1 andH2, respectively. In other words, the Lévy process whose characteristic

exponent is given by Φ1(−iθ)Φ2(iθ), θ ∈ R. From (3.6), the Lévy measure of X is such

that

Π
+

X(x) = c1c2

∫ ∞

x

eβ1α1u

(eβ1u − 1)γ1+1

∫ ∞

u−x

eα2β2z

(eβ2z − 1)γ2+1
dz du

+ δ2c1
eβ1α1x

(eβ1x − 1)γ1+1
+ k2c1

∫ ∞

x

eβ1α1u

(eβ1u − 1)γ1+1
dx.

Making use of the general binomial expansion, we develop the integrals above in series

form,

Π
+

X(x) =
c1c2
β2

∞∑
n,k=0

(γ1 + 1)k(γ2 + 1)n

k!n!(γ2 + 1− α2 + n)

e−β1(γ1+1−α1+k)x

β1(γ1 + 1− α1 + k) + β2(γ2 + 1− α2 + n)

+ δ2c1
eβ1α1x

(eβ1x − 1)γ1+1
+

k2c1
β1

∞∑
k=0

(γ1 + 1)k

k!(γ1 + 1− α1 + k)
e−β1(γ1+1−α1+k)x

where (z)n = Γ(z+n)/Γ(z), z ∈ C. An identical expression holds for Π
−
X(x) by exchanging

the roles of the constants (k1, δ1, c1, α1, β1, γ1) and (k2, δ2, c2, α2, β2, γ2). It is important to

note that the Gaussian component of the process X is given by 2δ1δ2.

We define a General Hypergeometric process to be the 14 parameter Lévy process

with characteristic exponent given in compact form

Ψ(θ) = diθ +
1

2
σ2θ2 + Φ1(−iθ)Φ2(iθ), θ ∈ R (3.9)

where d, σ ∈ R. The inclusion of the two additional parameters d, σ is largely with ap-

plications in mathematical finance in view. Without these two additional parameters it

is difficult to disentangle the Gaussian coefficient and the drift coefficients from param-

eters appearing in the jump measure. Note that the Gaussian coefficient in (3.9) is now

σ2/2+2δ1δ2. The definition of General Hypergeometric Lévy processes includes previously

defined Hypergeometric Lévy processes in Kyprianou et al. [14] and Lamperti-stable Lévy

processes in Caballero et al. [5]. Note that this is also the case of Kuznetsov’s β-class of

Lévy processes.
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 Just as with the case of the β-family of Lévy processes, because Ψ can be written as

a linear combination of a quadratic form and beta functions, it turns out that one can

identify all the roots of the equation Ψ(θ) + q = 0 which is again sufficient to describe

the laws of Xe1/λ and −Xe1/λ. We get the following two results whose proofs are briefly

outlined in the Appendix.

Theorem 3. For λ > 0, all the roots of the equation

λ+ Ψ(θ) = 0

are simple and occur on the imaginary axis. Moreover, they can be enumerated by {iξ+
n :

n ≥ 0} on the positive imaginary axis and {iξ−n : n ≥ 0} on the negative imaginary axis

in order of increasing absolute magnitude where

ξ+
0 ∈

(
0, β2(1 + γ2 − α2)

)
, ξ−0 ∈

(
− β1(1 + γ1 − α1), 0

)
ξ+
n ∈

(
β2(γ2 − α2 + n), β2(1 + γ2 − α2 + n)

)
for n ≥ 1

ξ−n ∈
(
− β1(1 + γ1 − α1 + n),−β1(γ1 − α1 + n)

)
for n ≥ 1.

Moreover, for x > 0,

P(Xe1/λ ∈ dx
)

= −

(∑
k≥0

c−k ξ
−
k e

ξ−k x

)
dx, (3.10)

where

c−0 =
∏
n≥1

1 +
ξ−0

β1(γ1−α1+n)

1− ξ−0
ξ−n

and c−k =
1 +

ξ−k
β1(γ1−α1+k)

1− ξ−k
ξ−0

∏
n≥1,n6=k

1 +
ξ−k

β1(γ1−α1+n)

1− ξ−k
ξ−n

.

Moreover, a similar expression holds for P(−Xe1/λ ∈ dx) with the role of {ξ−n : n ≥ 0}
replaced by {−ξ−n : n ≥ 0} and α1, β1, γ2 replaced by α2, β2, γ2.

Similar remarks to those made after Theorem 2 regarding the existence of atoms in

the distribution of Xe1/λ and −Xe1/λ also apply here.

Remark 1. It is important to note that the hypergeometric Lévy process is but one

of many examples of Lévy processes which may be constructed using Vigon’s theory of

philanthropy. With the current Monte Carlo algorithm in mind, it should be possible to

engineer other favourable Lévy processes in this way.

4 Simulations

Our starting point is to look at how our method compares against the obvious way of

simulating the distribution of (X1, X1) using a random walk Monte Carlo method. We
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 do this for the most basic of cases, namely Brownian motion, for the simple reason that

we are able to compare simulations of the distribution of X1 and the joint distribution

of (X1, X1) against an exact value. In this experiment we simulated m = 106 paths of

the quantities (V (n, n), J(n, n)) for n = 10, 102 and 103 thereby producing numerical es-

timates of P(X1 ≤ z) for different values of z and P(X1 ≤ z1, X1 ≥ z2) for different pairs

z1, z2 with z1 ≤ z2. Note that the two Wiener-Hopf random variables we are required to

sample from are both known in exact form as exponential distributions. For fair compar-

ison, we also simulated numerical estimates of the aforementioned probabilities using the

obvious Gaussian random walk approximation to a Brownian motion with 2n steps for

the same values of n. (Recall that in our method, each of the n exponential periods that

make up the g(n, n) time horizon has associated to it two steps coming from each of the

Wiener-Hopf factors which explains the comparison against 2n steps in the random walk

simulation). The results are illustrated in Tables 1 and 2, both of which appear to indi-

cate clear benefits from the Wiener-Hopf method (indicated by w.h.) over the alternative

random walk method (indicated by r.w.).

As mentioned before, a typical example of a financial contract whose payoff depends

on the joint density of (Xt, X t) is a barrier option. All of the forthcoming simulations take

as a test case an up-and-out European call option with unit time horizon whose value

function satisfies

V (x) = E(e−r(ex+X1 −K)+1{exp(x+X1)<b}). (4.11)

We take the following parameters: strike price K = 5, barrier b = 10 and r = 5/100.

Below we show some plots of V (as a function of s = ex) obtained by simulating m = 106

paths of the quantities (V (n, n), J(n, n)) for n = 100. Each plot takes about 40 seconds to

produce and the simulations were programmed using the open source computer algebra

system SAGE (www.sagemath.org) on a standard 2009 laptop.

In all cases the linear drift is chosen such that Ψ(−i) = −r, for no other reason that this

is a risk neutral setting which makes the process {exp(Xt − rt) : t ≥ 0} is a martingale.

Figure 1 shows for an example of the classic Black-Scholes model, i.e. Xt = σBt + µt,

where B is standard Brownian motion, the exact value of V , the simulated value of V

and the difference between the two. Figure 2 shows how different the value function can

be when X is a member of the β-family. The five diagrams cover the case that there

is a Gaussian component with a jump structure which has finite activity, bounded and

unbounded variation paths respectively as well as the case of no Gaussian component

with a jump structure which has bounded and unbounded variation paths.

The fourth diagram in Figure 2 exhibits the interesting phenomenon of a discontinuity

in V (x) at the boundary. The discontinuity should be there and occurs due to the fact

that, for those particular parameter choices, there is irregularity of the upper half line.

Irregularity of the upper half line is equivalent to there being an atom at zero in the

distribution ofX t for any t > 0 (also at independent and exponentially distributed random

times). This means that the Wiener-Hopf Monte Carlo algorithm correctly builds in an
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 atom at zero into the approximating distribution of X1 if and only if an atom is supposed

to be present. By contrast the random walk Monte Carlo simulation method will always

build in an atom at zero into the approximating distribution of X1 irrespective of whether

it is supposed to be there or not.

Finally in Figure 3 we look at two simulations of V (x) for a hypergeometric Lévy

process with and without a Gaussian component. Both diagrams in Figure 3 come from

processes with unbounded variation paths.

Appendix

Our objective is to give a brief overview of the proof of Theorem 3. Let us start by writing

out the Lévy-Khintchine formula for the General Hypergeometric Lévy process in full

detail. We shall use the usual notation for the beta function B(x; y) = Γ(x)Γ(y)/Γ(x+y).

The next lemma is proved using straightforward algebra making use of the following

identity which is obtained using integration by parts and Proposition 9 in [11]. Let θ ∈ R,

then

iθ

∫ ∞

0

(1− eiθ)
eαβx

(eβx − 1)1+γ
dx = α

(
B(1 + γ − α− iθ/β;−γ)−B(1 + γ − α;−γ)

)
− (1 + γ)

(
B(1 + γ − α− iθ/β;−(1 + γ))−B(1 + γ − α;−(1 + γ))

)
+ i

θα

β
B(1 + γ − α;−γ)

(
ψ(1 + γ − α)− ψ(1− α)

)
− i

θ(1 + γ)

β
B(1 + γ − α;−(1 + γ))

(
ψ(1 + γ − α)− ψ(−α)

)
.

Lemma 1. Up to a multiplicative constant, the characteristic exponent of any hypergeo-

metric Lévy process X can be written for θ ∈ R in the form

Ψ(θ) = iθ(d + µ) +
1

2
(σ2 + 2δ1δ2)θ

2 + Ψ1(θ)−Ψ1(0),

where

Ψ1(θ) = −δ2c1(1 + γ1)B(−iθ/β1 + 1 + γ1 − α1;−(1 + γ1))

− δ1c2(1 + γ2)B(iθ/β2 + 1 + γ2 − α2;−(1 + γ2))

− c2
β2

(
k1 − δ1β2α2 +

c1
β1

B(1 + γ1 − α1;−γ1)

)
B(iθ/β2 + 1 + γ2 − α2;−γ2)

− c1
β1

(
k2 − δ2β1α1 +

c2
β2

B(1 + γ2 − α2;−γ2)

)
B(−iθ/β1 + 1 + γ1 − α1;−γ1)

+
c1c2
β1β2

B(−iθ/β1 + 1 + γ1 − α1;−γ1)B(iθ/β2 + 1 + γ2 − α2;−γ2)

for some constant µ which, without loss of generality, can be ignored and absorbed into

the quantity d.
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 Proof of Theorem 3. As noted in the previous lemma, we may take without loss of gener-

ality the constant µ = 0. Using the explicit expression of the characteristic exponent Ψ,

we rewrite the equation λ+ Ψ(iθ) = 0 as follows

θd +
1

2
(σ2 + 2δ1δ2)θ

2 − λ = Ψ1(iθ)−Ψ1(0).

Let us denote the right hand side of the above equation by R(θ) and the left hand side

by L(θ). We first verify that there exist a solution to the identity of above on (−β1(1 +

γ1 − α1), 0) and
(
0, β2(1 + γ2 − α2)). We observe that R(0) = 0 and that R(θ) ↘ −∞ as

θ ↘ −β1(1 + γ1 − α1) and as θ ↗ β2(1 + γ2 − α2). On the other hand L(θ) is continuous

and negative at θ = 0, thus we have at least one solution ξ+
0 ∈ (0, β2(1 + γ2−α2)) and at

least one solution ξ−0 ∈ (−β1(1 + γ1 − α1), 0). In fact, we have that we have one solution

on each interval since the function R is concave on (−β1(1 + γ1 − α1), β2(1 + γ2 − α2))

while L is convex. The proof for n 6= 0 follows from similar arguments.

The agenda for the remainder of the proof is identical to those of Theorems 8 and 11

of Kuznetsov [11]. Two key issues are that we need to choose an entire function which

has zeros at the poles of Ψ(θ) with the same multiplicity. The the obvious choice here is

1

Γ(1 + γ1 − α1 − iθ/β1)Γ(1 + γ2 − α2 + iθ/β2)
.

Secondly, we need to establish certain asymptotics of the roots to the equation λ+Ψ(iθ) =

0. From this it follows that one may identify the space-time Wiener-Hopf factorisation,

λ

λ+ Ψ(θ)
=

1

1 + iθ
ξ−0

∏
n≥1

1− iθ
β1(γ1−α1+n)

1 + iθ
ξ−n

× 1

1 + iθ
ξ+
0

∏
n≥1

1 + iθ
β2(γ2−α2+n)

1 + iθ
ξ+
n

,

where the infinite product converges uniformly on the compact subsets of the complex

pane excluding zeros/poles of λ+Ψ(θ). The distribution of Xe1/λ (and subsequently that

of −Xe1/λ) follows from a straightforward Fourier inversion using residues.

The whole proof in the case at hand thus rests on establishing the asymptotic behaviour

of the roots of λ+Ψ(θ). Just as in [11], one may do this by making use of the asymptotics

of B(α + θ; γ) and B(α − θ; γ) that are given in the proof of Theorem 10 in the same

paper.

For example, if δ1, δ2 > 0 and θ →∞, we use the explicit form of Ψ in Lemma 1 and

rewrite equation λ+ Ψ(iθ) = 0 as

sin
(
π(θ/β2 + α2)

)
sin
(
π(θ/β2 − 1 + α2 − γ2)

) =
β1+γ2

2

2δ1c2Γ(−γ2)
(σ2 + 2δ1δ2)θ

1−γ2 +O(θγ1−γ2) +O(θ−γ2),

while if σ = δ1 = δ2 = 0 and θ →∞, we have

sin
(
π(θ/β2 − 1 + α2)

)
sin
(
π(θ/β2 − 1 + α2 − γ2)

) =
β1+γ2

2

c2Γ(−γ2)

(
k2 +

c2
β2

B(1 + γ2 − α2;−γ2)

)
θ−γ2

+O(θ−γ1−γ2).
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 The case when θ → −∞ can be obtained in a similar way.

There are several other cases to consider depending on the equality with zero of some

of the parameters in the defintion of Ψ. We summarise all the possible asymptotics of the

roots below:

ξ−n = −β1(n− α1 + ω1)− A(n− α1 + ω1)
%1 +O(n%1−ε)

ξ+
n = β2(n− α2 + ω2) + C(n− α2 + ω2)

%2 +O(n%2−ε) as n→∞.

where the coefficients ω1, ω2, %1, %2, A and C are presented in Table 3 and Table 4.
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[5] Caballero, M. E., Pardo, J. C. and Pérez, J. L. (2009) On the Lamperti stable pro-

cesses To appear in Probability and Mathematical Statistics.

[6] Carr, P. (1998) Randomization and the American Put. Rev. Fin. Studies 11, 597–626.

[7] Cont, R. and Tankov, P. (2003) Financial modelling with Jump Processes. Chapman

& Hall / CRC Press.

[8] Doney, R. A. (2004) Stochastic bounds for Lévy processes. Ann. Probab. 32, 1545–
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 z = 0.1 z = 0.2 z = 0.3 z = 0.4 z = 0.5 z = 1 z = 1.5 z = 2

exact 0.0797 0.1585 0.2358 0.3108 0.3829 0.6827 0.8664 0.9545

n = 10 w.h. 0.0828 0.1644 0.2447 0.3219 0.3955 0.6944 0.8700 0.9523

error 3.88% 3.74% 3.75% 3.56% 3.28% 1.71% 0.41% -0.23%

r.w. 0.1886 0.2593 0.3315 0.4020 0.4689 0.7389 0.8951 0.9661

error 136.76% 63.57% 40.56% 29.36% 22.44% 8.23% 3.32% 1.21%

n = 100 w.h. 0.0803 0.1592 0.2372 0.3125 0.3843 0.6852 0.8672 0.9546

error 0.79% 0.41% 0.58% 0.52% 0.35% 0.36% 0.09% 0.01%

r.w. 0.1122 0.1909 0.2675 0.3411 0.4116 0.7018 0.8764 0.9586

error 40.90% 20.40% 13.45% 9.72% 7.48% 2.80% 1.16% 0.43%

n = 1000 w.h. 0.0792 0.1581 0.2357 0.3112 0.3837 0.6839 0.8665 0.9546

error -0.53% -0.27% -0.07% 0.12% 0.20% 0.17% 0.03% 0.00%

r.w. 0.0899 0.1684 0.2456 0.3206 0.3925 0.6896 0.8699 0.9559

error 12.91% 6.24% 4.16% 3.12% 2.50% 1.01% 0.41% 0.15%

Table 1: Computing P(X1 ≤ z) for different values of z when X is a standard Brownian

motion.
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z2 = 0.1 z2 = 0.3 z2 = 0.5 z2 = 1

exact 0.0139 0.0047 0.0014 0.00003

w.h. 0.0138 0.0046 0.0013 0.00003

z1 = −2 error -0.93% -1.93% -1.33% -5.27%

r.w. 0.0128 0.0043 0.0012 0.00002

error -7.92% -8.22% -10.51% -24.22%

exact 0.1151 0.0548 0.0228 0.0014

w.h. 0.1147 0.0544 0.0225 0.0013

z1 = −1 error -0.28% -0.65% -0.91% -5.77%

r.w. 0.1095 0.0515 0.0210 0.0012

error -4.87% -6.12% -7.54% -14.36%

exact 0.4207 0.2743 0.1587 0.0228

w.h. 0.4205 0.2738 0.1576 0.0223

z1 = 0 error -0.06% -0.18% -0.68% -2.02%

r.w. 0.4101 0.2653 0.1518 0.0211

error -2.54% -3.26% -4.34% -7.18%

exact 0.1587

w.h. 0.1583

z1 = 1 error -0.24%

r.w. 0.1519

error -4.23%

Table 2: Computing P(X1 ≤ z1, X1 ≥ z2) for different values of z1, z2 when X is a

standard Brownian motion.
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Case ω1 A %1

σ2, δ1, δ2 > 0 1 + γ1
2δ2c1

β1Γ(1+γ1)(σ2+2δ1δ2)
γ1 − 1

σ = 0, δ1, δ2 > 0 1 + γ1
c1

β1Γ(1+γ1)δ1
γ1 − 1

σ2, δ2 > 0, δ1 = 0 1 + γ1
2δ2c1

β1Γ(1+γ1)σ2 γ1 − 1

σ2, δ1 > 0, δ2 = 0 1 + γ1
2c1c2Γ(1−γ2)

β
1+γ2
2 β

2−γ1
1 Γ(1+γ1)γ2σ2

γ1 + γ2 − 2

δ2 > 0, σ = δ1 = 0 0 sin(πγ1)
π

β2
1γ1(µ+d)

δ2c1Γ(1−γ1)
−γ1

δ1 > 0, σ = δ2 = 0 1 + γ1
c1

β1δ1Γ(1+γ1)
γ1 − 1

σ2 > 0, δ1 = δ2 = 0 1 + γ1
2c1c2Γ(1−γ2)

β
1+γ2
2 β

2−γ1
1 Γ(1+γ1)γ2σ2

γ1 + γ2 − 2

σ = δ1 = δ2 = 0 1
β2
1γ1

c1Γ(1−γ1)
sin(πγ1)

π

(
k1 + c1

β1
B(1 + γ1 − α1;−γ1)

)
−γ1

Table 3: Coefficients for the asymptotic expansion of ξ−n .

Case ω2 C %2

σ2, δ1, δ2 > 0 1 + γ2
2δ1c2

β2Γ(1+γ2)(σ2+2δ1δ2)
γ2 − 1

σ = 0, δ1, δ2 > 0 1 + γ2
c2

β2Γ(1+γ2)δ2
γ2 − 1

σ2, δ2 > 0, δ1 = 0 1 + γ2
2c1c2Γ(1−γ1)

β
1+γ1
1 β

2−γ2
2 Γ(1+γ2)γ1σ2

γ1 + γ2 − 2

σ2, δ1 > 0, δ2 = 0 1 + γ2
2δ1c2

β2Γ(1+γ2)σ2 γ2 − 1

δ2 > 0, σ = δ1 = 0 1 + γ2
c2

β2δ2Γ(1+γ2)
γ2 − 1

δ1 > 0, σ = δ2 = 0 0 sin(πγ2)
π

β2
2γ2(µ+d)

δ1c2Γ(1−γ2)
−γ2

σ2 > 0, δ1 = δ2 = 0 1 + γ2
2c1c2Γ(1−γ1)

β
1+γ1
1 β

2−γ2
2 Γ(1+γ2)γ1σ2

γ1 + γ2 − 2

σ = δ1 = δ2 = 0 1
β2
2γ2

c2Γ(1−γ2)
sin(πγ2)

π

(
k2 + c2

β2
B(1 + γ2 − α2;−γ2)

)
−γ2

Table 4: Coefficients for the asymptotic expansion of ξ+
n .
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Figure 1: From left to right, a simulation of V (x) using the Wiener-Hopf method, an exact

plot of V (x) and the difference between the two curves. Here the underlying Lévy process

takes the form Xt = 0.4Bt − 0.03t
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Figure 2: These four diagrams plot the simulated values of V (x) for a β-process with pa-

rameters (a, σ, α1, β1, λ1, c1, α2, β2, λ2, c2) = (a, 0.4, 1, 1.5, λ, 1, 1, 1.5, λ, 1) where a is chosen

so that −r = Ψ(−i) and, from left to right, top to bottom, σ = 0.4 and λ = 0.5, 1.5, 2.5 for

the first three diagrams (corresponding to the cases of compound Poisson, bounded varia-

tion and unbounded variation jump component respectively) and σ = 0 with λ = 1.5, 2.5

(corresponding to bounded variation and unbounded variation jump component respec-

tively) for the final two diagrams.

18



 
 

2 4 6 8 10

0.05

0.1

0.15

0.2

2 4 6 8 10

0.5

1

1.5

2

2.5

Figure 3: From left to right, these two diagrams plot the simulated values of V (x) for a hy-

pergeometric Lévy process with parameters (d, σ, k1, δ1, c1, α1, β1, γ1, k2, δ2, c2, α2, β2, γ2) =

(d, σ, δ1, 0.5, 1, 0.5, 10, 0.5, 0, 0.5, 1, 0.5, 10, 0.5) chosen such that (σ, δ1) = (0.3, 1) and (0, 0)

respectively and d is chosen so that −r = Ψ(−i).

19


